"NEW"

DOC. 21

SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Titl		CHEMISTRY - INSTRU	MENTATION I
Code No.:	CHM 221-4		
Program:	WATER RESO	URCES ENGINEERING T	TECHNOLOGY
Semester:	FOUR	208	Final Grade - Theory Lab
Date:	APRIL 1988	y - Aselgnments and - Mid-term test - Final test	neor
Author:	DOUG HEGGA	RT/TROWBRIDGE	Late labs will be marked
		New:	X Revision:
	Lon, Robinson,	but - sleyland la	Endergraduate Instrument
APPROVED:	Chairperson	gent-	Date 27/88

CALENDAR DESCRIPTION

ANALYTICAL CHEMISTRY - INSTRUMENTATION I

CHM 221

Course Name

Course Number

PHILOSOPHY/GOALS:

The course is designed to give the student an understanding of the role Instrumentation has in Analytical Chemistry. The course involves theory and laboratory which will serve as a basis for Analytical Chemistry - Instrumentation II taught in semester five.

METHOD OF ASSESSMENT (GRADING METHOD):

Final Grade - Theory 50% Lab 50%

Theory	- Assignments and Quizzes	20%
_	- Mid-term test	30%
	- Final test	50%

Late labs will be marked but will be downgraded 10% per week while late assignments will not be accepted.

TEXTBOOK(S):

Introduction of Chemical Analysis - Braun, McGraw-Hill, 1982

<u>Undergraduate</u> <u>Instrumental</u> <u>Analysis</u> - 3rd Edition, Robinson, Dekker, 1982

TOPIC NO. TOPIC DESCRIPTION Working Curves and Standards 1 - non-linear - linear - method of standard additions - curve fitting - least squares fit - Assignment #1 - Quiz #1 Molecular Spectroscopy 2 - review of atomic physics as it relates to EMR - development of Beer-Lambert Law - criteria for selection of for an Absorption measurement - analysis based on light scattering - turbidimetry - nephlometry - end point detection using Absorption measurement - determination of Ka using Absorption measurement - Assignments #2 and #3 - Quiz #2 - Mid-Term 3 Atomic Absorption - comparison of AAS, AFS, FES, AES - double beam vs. single beam - application advantages and limitations - interferences - monochromators, detectors - Assignment #4 Chromatography 4 - types of chromatography - HPLC, GC - Column, Paper - TLC, Ion-exchange - electrophoresis - stationary Phase, Mobile Phase, Carrier Gas - Detectors - Qualitative and Quantitative aspects of G.C. - retention time and retention volume - efficiency, HETP, n - resolution, symmetry - Column Types - Assignment #5

LABS: 1. Spectrophotometric - a) determination of Fe in H2O

- b) determination of phenol in H20
- c) determination of pb in H20
- 2. Potentiometric I a) determination of [HOAC] in H20
 - b) determination of [H3PO4]
- 3. Atomic Absorption a) determination of [Ca]
 - b) determination of [Mg]
 - c) determination of water hardness
- 4. Potentiometric II using Specific Ion Electrodes:
 - a) determination of Cl in H2O
 - b) plotting first and second derivative curves
- 5. Optical determination of optical activity
- 6. Chromatography a) hydrocarbons in H₂O

- TLC, .lon-exchange

- b) Qualitative and Quantitative determination
 - c) parameter adjustments